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Abstract

The relative composition of protein, oil, and starch in the maize kernel has a large genetic component. Predictions of kernel composition

based on single-kernel near infrared spectroscopy would enable rapid selection of individual seed with desired traits. To determine if single-

kernel near infrared spectroscopy can be used to accurately predict internal kernel composition, near infrared reflectance (NIR) and near

infrared transmittance (NIT) spectra were collected from 2160 maize kernels of different genotypes grown in several environments.

A validation set of an additional 480 kernels was analyzed in parallel. Constituents were determined analytically by pooling kernels of the same

genotype grown in the same environment. The NIT spectra had high levels of noise and were not suitable for predicting kernel composition.

Partial least squares regression was used to develop predictive models from the NIR spectra for the composition results. Calibrations developed

from the absolute amount of each constituent on a per kernel basis gave good predictive power, while models based on the percent composition

of constituents in the meal gave poor predictions. These data suggest that single kernel NIR spectra are reporting an absolute amount of each

component in the kernel.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Cereal grains contribute to over 60% of the total world food

production (Lásztity, 1999). Cereals are predominantly

composed of carbohydrates, mostly in the form of starch,

with considerable amounts of protein as well as some lipids,

vitamins, and minerals. Both genetic and environmental effects

create significant variation in the amount and quality of each of

these constituents. Multiple methods have been developed to

help breeders screen crops for various seed composition traits

(e.g. Baenziger et al., 2001; Dunlap et al., 1995). Chemical
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analysis procedures are the most widely accepted reference

methods for determining seed composition. However, these

methods frequently are destructive and require large samples of

grain.

Near infrared spectroscopy provides an alternative, non-

destructive technology for measuring constituents of biological

materials. Organic molecules have specific absorption patterns

in the near infrared region that can report the chemical

composition of the material being analyzed (Williams and

Norris, 2001). Near infrared spectra can be collected either

from the reflectance (NIR) of a sample or the transmittance

(NIT) through a sample (Delwiche, 1995; Williams, 1979).

Both NIR and NIT measurements allow the simultaneous

determination of multiple constituents in a sample and are

commonly used to predict the composition of bulk whole grain

samples in maize (Orman and Schumann, 1991). Bulk whole-

grain samples can be screened rapidly, require no sample

preparation, and preserve the kernels after the measurement for

further analysis or for propagation (Baye and Becker, 2004;

Velasco et al., 1999). However, use of whole grain samples

does not allow the identification of individual kernels that

deviate significantly from the mean composition within
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a population. In addition, bulk samples give no indication of an

abnormal distribution of kernels within the sample, such as a

few kernels contaminated by a fungus or a segregating

population of kernels with differing composition (Dowell

et al., 2002).

Non-destructive analysis of single kernel composition is

valuable for identifying outlying individuals both for breeding

and for industrial seed sorting applications. In maize, single-

kernel nuclear magnetic resonance (NMR) technology has

been used to select oil traits (Alexander et al., 1967), and it has

been demonstrated that the rate of improvement for maize oil

traits can be enhanced over bulk sample analysis through

single-kernel selection (Silvela et al., 1989). However, NMR is

limited to detecting liquid constituents such as oil and moisture

in maize seeds. NIR and NIT spectroscopy give the possibility

for rapid screening of individual kernels for multiple chemical

constituents. Single kernel NIT spectra between 920 and

950 nm were found to correlate very well with moisture

content, with a 2% standard error of prediction of moisture

content (Finney and Norris, 1978). More recently, single kernel

NIR and NIT spectroscopy has been used to sort individual

maize kernels for different types of fungal infections (Dowell

et al., 2002; Pearson et al., 2001, 2004) or to identify

genetically modified kernels (Munck et al., 2001).

The present study was conducted to determine if single

kernel NIR or NIT spectroscopy could also be used to predict

kernel composition in maize. These predictions will help

geneticists and breeders to screen large numbers of samples

and then select and propagate single seeds with desirable

composition traits. Single kernel NIR data have been used to

develop a predictive model for wheat protein content

(Delwiche and Hruschka, 2000). However, maize kernels

have a much less uniform internal structure with the maize

embryo comprising a larger proportion of the seed than in

wheat. Indeed, attempts to develop calibrations for maize oil

content using NIT data suggest that single kernel predictive

models would be difficult to develop for maize (Cogdill et al.,

2004; Orman and Schumann, 1992).

Here, we report the development calibration equations to

predict accurately individual maize kernel constituents using

NIR technology. Near infrared predictive models are best

developed with samples that display a large range of

compositional variation (reviewed in Willimas and Norris,

1987). In maize, defective kernel (dek) mutants have large

effects on seed size and can effectively delete major

constituents of the kernel by affecting starch biosynthesis

(reviewed in Boyer and Hannah, 2001), storage protein

accumulation (reviewed in Gibbon and Larkins, 2005), or

by aborting embryo growth early in seed development

(Magnard et al., 2004). In the mature kernel, the embryo

contains the highest proportion of oil and removal of the

embryo causes a reduction in total oil content. We reasoned

that dek mutants would provide a large range of different

maize kernel compositional variants for developing pre-

dictive models from near infrared spectra and focused on

these mutants in this study.
2. Materials and methods

2.1. Seed stocks

All maize seeds used were obtained from plants grown at the

University of Florida, Plant Science Research and Education

Unit (Citra, Florida). Eight inbred lines commonly used for

genetic studies were included as reference stocks. These lines

included: W22, W23, Mo17, B73, A632, W64A as well as

color-converted W22 and A632 stocks (W22ACR and

A632ACR). All inbred seeds were from self-pollinated ears.

To develop the calibration and external validation sets, maize

kernel mutants and their normal sibling seeds were used as a

source of large variance in seed composition. The majority of

the seed mutants were derived from the UniformMu

transposon-tagging population (McCarty et al., 2005). The

UniformMu mutants were selected based on visible defects in

embryo or endosperm development, which are likely to cause

altered kernel composition.

Seed for each of 24 UniformMu mutants were grown in two

field seasons and self-pollinated to identify segregating ears. In

each field season, there were variations in soil type, average

temperature, and day length. A pair of segregating ears for each

mutant was selected to include both environmental and genetic

variation. In addition, six mutants with strong effects on starch

accumulation were used as controls including: shrunken2 (sh2)

in a W22 background, brittle1 (bt1) in a W23 background, and

sugary1 (su1), bt1, brittle2 (bt2), and sh2 in a W64A

background. Two ears of su1 in W64A and a single ear of

each of the other mutants were included in the study for a total

of 55 ears of corn segregating for 30 different seed mutant loci.

A mutant and normal sample of 24 kernels each was selected

from each ear for single-kernel near infrared spectroscopy and

analytical determination of composition. A total of 110

samples were used to develop and test the calibrations.

Fig. 1A shows examples of the mutant and corresponding

normal kernels for eight of the ears used in this study, and a

schematic of the overall study design is shown in Fig. 1B.

2.2. Near infrared data collection and pretreatments

Near infrared spectra were collected from 24 mutant and 24

normal sibling kernels from each of the 55 ears selected for the

calibration development. Prior to collecting the spectra, the

kernels were equilibrated to ambient humidity for 2 or more

weeks in a controlled laboratory environment. NIR and NIT

spectra were collected from the abgerminal side of individual

kernels. The NIR spectra were measured on maize kernels

placed manually onto the quartz window of a bifurcated

interactance fiber-optic bundle (Fig. 2) attached to a diode-

array spectrometer and light source (DA7000, Perten Instru-

ments, Springfield, IL). The viewing area was 17 mm diameter,

the illumination bundle was a 7 mm diameter ring, and the

reflectance probe bundle was 2 mm diameter. The light source

was chopped at a frequency of 30 Hz and the integration time

for the spectrometer was set at 33 ms. A total of 15 spectra

were acquired for each kernel without repositioning the kernel



Fig. 1. (A) Examples of the mutant and normal sibling seeds used in this study. The top two rows show normal kernels, and the bottom two rows show sibling mutant

kernels. Each column of four kernels derives from different ears of corn segregating for a mutant, and the germinal (g) and abgerminal (ab) faces of the kernels are

shown. Columns three and six show examples of known low starch mutants, bt1 and su1, respectively. (B) Flow diagram of the experimental methods used to

develop the PLS regression models.
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on the fiber optic. These spectra were averaged and saved for

analysis. Prior to scanning batches of 48 kernels, a Spectralon

reference measurement was taken. Reflectance (R) values were

collected at 5 nm intervals for wavelengths between 890 and

1700 nm, and absorbance values were calculated as log(1/R).

First derivative absorbance spectra were calculated in

Microsoft Excel by subtracting the absorbance values 10 nm

above and below each wavelength from 900 to 1690 nm. The

derivative spectra were transformed with the standard normal

variant (SNV) transformation prior to regression against the

analytical constituent data (Barnes et al., 1989).

The NIT spectra were collected with a fiber optic InGaAs

diode array spectrometer ((OSC/256L-1.7T1-250A/0.9-1.7/3.2,

Control Development, SouthBend, IN, USA) from 900 to

1500 nm at 3 nm intervals. This was accomplished by

positioning the InGaAs spectrometer fiber optic 2 cm above

the kernels on the quartz window of the interactance probe.
Fig. 2. Schematic of the combined near infrared reflectance and transmittance

sampling apparatus.
The fiber optic consisted of a single low OH fiber, 400 mm in

diameter and 61 cm long. The fiber captured light in a circle of

about 3 mm diameter centered on the corn kernel. This

arrangement allowed simultaneous acquisition of both trans-

mission and reflectance spectra and minimized sample handling

(Fig. 2). Prior to measurement of each set of 48 kernels, a 0.5 in.

thick piece of Teflon was used to take a reference transmittance

measurement. The NIT spectra contained substantial noise due

to light scattering and attenuation through the whole corn kernel.

A variety of integration times were tested with the best signal-to-

noise ratio observed for an integration time of 300 ms per kernel.

This lengthy integration time led to detector saturation for a

significant fraction of the kernels. The correlations between

measured constituents and the NIT spectra were poor and not

studied further.
2.3. Constituent analysis

The kernels were pooled into samples of 24 mutant or 24

normal kernels from individual ears to obtain sufficient meal

for the analysis of multiple constituents. An average seed

weight was determined for each pool, and the seeds were

ground to a fine meal using a UDY Cyclone sample mill (UDY

Co., Fort Collins, CO). For the inbred lines, a large sample of

w200 kernels was ground for multiple replicates of each assay.

The meal was divided into aliquots for assays of gross energy,

protein, starch, and relative fatty acid content using methods

described below. All reference measurements were tested with

four replicate assays from the eight reference inbred stocks and

showed a coefficient of variation !3% (see Section 3). For the

calibrations, laboratory measurements were completed in

duplicate, and the average of the two measurements was used

for partial least squares regression.

Gross energy was measured with an isoperibol bomb

calorimeter standardized with benzoic acid as described by

Miller and Payne (1959). Briefly, 100 mg of dried meal was

placed in a Parr Model 1261 bomb calorimeter (Parr Instrument

Co., Moline, IL) and ignited in a pressurized, highly pure

oxygen environment. Gross energy was calculated based on the

heat released according to the manufacturer’s instructions.
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Protein content (N!6.25) was determined indirectly from

total nitrogen content using a fully automated Elantech NCS

2500 C/N combustion analyzer (Angelino et al., 1997; AOAC

International, 2000; Fiedler et al., 1973). Total nitrogen was

measured on a 10 mg sample of meal following the

manufacturer’s instructions.

Starch was determined from an enzymatic digestion of the

maize meal followed with a colorimetric assay for glucose

content (Holm et al., 1986; Karkalas, 1985). Briefly, 100 mg of

sample meal was hydrated in 5 ml H2O and then digested with

0.1 ml heat stable alpha-amylase (21,390 units/ml; Sigma-

Aldrich A-3403) by heating to 93 8C for 1 h. A 0.1 ml aliquot

of the digested sample was mixed with 0.9 ml H2O, 1 ml

0.1 M sodium acetate (pH 4.5), and 50 ml amyloglucosidase

(1244 units/ml; Sigma-Aldrich A-1602), and the extract

incubated at 60 8C for 30 min. The enzyme-treated extract

was diluted 1:250 in H2O and 0.5 ml of the diluted extract was

mixed with 2.5 ml glucose oxidase–peroxidase reagent [0.91%

Na2HPO4, 0.5% KH2PO4, 0.1% phenol, 0.015% 4-aminoanti-

pyrine, 7 units/ml glucose oxidase (Sigma-Aldrich G-6641),

7 units/ml peroxidase (Sigma-Aldrich P-8415)]. The reaction

was incubated at 37 8C for 45 min, cooled to room temperature,

and the absorbance measured at 505 nm using a Beckman DU-

50 series spectrophotometer. A standard curve of glucose was

used to determine the glucose content in the extracts, which

was then converted to starch with a multiplication factor of 0.9.

A parallel extraction of the maize meal was completed without

the addition of polysaccharide degrading enzymes, and soluble

sugar content for the maize samples was estimated with the

same assay. The quantity of soluble sugars in the meal was

lower than could be accurately determined with a coefficient of

variation of 14% for the eight reference stocks (data not

shown), and the total saccharides were reported as starch

content.

Relative fatty acid contents were determined by gas

chromatography (GC) after base catalyzed release, as fatty

acid methyl esters (Thies, 1971). About 10 mg meal was mixed

with 1 ml 0.5 M sodium methoxide in methanol and

transmethylated by incubating at 20 8C for 20 min. Iso-Octane

(500 ml) and 5% NaHSO4 (200 ml) was then added and the

mixture centrifuged at 300 g for 5 min to separate the organic

phase. The upper phase was transferred into a septum vial and

analyzed for fatty acid methyl esters on a Hewlett–Packard

model 5890 Series II gas chromatograph (Avondale, PA)

equipped with a split/split-less injector, a flame-ionization

detector, an automatic sampling device, and a 15-M Durabond

-23 capillary column (J&W Scientific, Deerfield, IL), which

was 0.25 mm i.d. with a film thickness of 0.25 mm. The column

temperature was programmed to increase from 180 to 220 8C at

15 8C/min, and the injector and detector ports were set at 250

and 300 8C, respectively. The carrier gas was helium with a

flow rate of 2.2 ml/min. Individual fatty acids were identified

on the basis of peak areas of injections and measured with a

Hewlett–Packard 3390A reporting integrator and expressed as

a percentage of the total fatty acids (area/area), including minor

fatty acids.
2.4. Partial least squares regression

A partial least squares (PLS) regression was used to

determine if predictive models could be developed for the

NIR spectra, NIT spectra, and the different expressions of

kernel composition. The spectra and analytical data were

randomly separated into a 90-sample training set (calibration

set) and a 20 sample external validation set (prediction set). For

each model, the descriptor data set (X matrix) consisted of the

transformed spectral data, which was averaged for each 24

kernel sample. The response data set (Y matrix) consisted of the

analytical data for the kernel constituents. Each analytical

value represents the average composition for each 24 kernel

sample. Absolute amounts of the constituents were calculated

by multiplying the average kernel weight by the percent values.

The same calculation was completed for relative fatty acid

levels to give a normalized fatty acid composition.

The PLS models were developed on mean-centered data

sets, and the calibration was made using SIMCA-P software

(Umetrics AB, 2005). The number of significant PLS factors to

build the model for each compositional trait was determined by

cross-validation. Cross-validation was completed by removing

one-seventh of the training set data, and a calibration model

was developed with the remaining samples. The removed

samples were then predicted, and the entire procedure was

repeated until all 90 samples were removed and predicted. An

optimal calibration was then selected using the number of

significant factors recommended by the default settings of the

software. A factor was considered significant if the Q2 statistic

of cross-validation for the factor was O0.05 and the factor

explained O3% of the variance for the response data set

(R2YO0.03). Q2 was calculated as: Q2Z1.0-PRESS/SS, where

PRESS is the prediction error sum of squares (PRESSZ
S[YactualKYpredicted]2) and SS is the residual sum of squares for

the previous factors. The optimal computed models were used

to predict the samples in the external validation set, and the

correlation coefficient of this prediction was reported as Q2ev.

3. Results

The single-kernel NIT spectra showed high levels of noise

(data not shown) as previously reported by Cogdill et al. (2004)

and were not analyzed further. In contrast, the NIR spectra

showed clear differences that appear to relate to the internal

chemical composition of the kernels. Fig. 3 shows individual

NIR spectra for three samples of 24 kernels. Based on the

analytical results (discussed below), these spectra represent

individuals with low protein (UniformMu rough endosperm3,

rgh3), low starch (sugary1, su1), or average protein and starch

(UniformMu, normal kernels). The su1 kernels are character-

ized by a flat overall absorbance, which is reflected in the first

derivative as lower magnitude spectra. The low protein, rgh3,

mutants showed a lower absorbance over the entire NIR spectra

with a sharper upward slope in absorbance between 1400 and

1450 nm. This caused the peak in the first derivative to occur at

slightly longer wavelengths as can be seen in Fig. 3B. These

observations suggest that single-kernel NIR spectra can detect



Fig. 3. Examples of the direct NIR spectra (A) and first derivative NIR spectra

(B) used in the study. Each panel shows the 24 spectra for each of three kernel

samples including a low protein mutant (green or light gray lines, rgh3), a low

starch mutant (blue or dark gray lines, su1), and a sample with average protein

and starch (black lines, UniformMu normal kernels)
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clear differences in relative kernel composition. However, the

NIR spectrum contains information from all the chemical

constituents of the sample and direct interpretation of the

absorbance values is difficult for complex mixtures such as an

intact kernel (Williams and Norris, 2001).

Standard analytical techniques were performed on a series

of eight maize inbred lines to ensure that they gave accurate

composition data with low levels of variance due to

measurement errors (Table 1). These methods were then used

to collect composition data from mutant and normal kernels.

The mutants showed lower average levels of the major kernel

components, as well as higher SD relative to the means,

suggesting that the mutants add a large amount of composition

variance to the overall data set (Table 2). The descriptive

statistics in Table 3 show that the 90 samples assigned to the

calibration data set and the 20 samples assigned to the

prediction data set had similar ranges and variation in kernel
Table 1

Maize meal composition for inbred lines

Inbred line Proteina (%)GSE Starcha (%)GSE Palmitic, 16:0b

(%)GSE

W22ACR 15.6G0.41 68.9G0.32 17.2G0.46

W22 12.4G0.22 70.3G0.43 13.8G0.26

W23 10.7G0.20 76.4G0.78 15.7G0.08

Mo17 14.5G0.09 71.1G0.46 14.2G0.14

B73 10.7G0.06 74.3G0.42 14.8G0.08

A632 14.5G0.32 70.3G0.39 15.6G0.42

A632ACR 11.7G0.19 70.7G0.68 13.3G0.08

W64A 11.6G0.18 77.2G0.89 11.5G0.16

a % of maize meal.
b % of extracted oil.
composition regardless of whether the composition values

were expressed as relative composition of the meal or absolute

quantities within the kernel. These data indicate that the two

sets contain enough variation to develop calibration equations

and that the external validation set is representative of the

range of variation found in the overall seed samples.

PLS models were developed based on relative kernel

composition (e.g. % protein or % starch) as well as absolute

amounts of kernel constituents (e.g. mg protein/kernel or

cal/kernel). Using models based on the relative levels of each

constituent in the meal, it was not possible to predict the

composition of the external validation set (Table 4). The

relative kernel composition models explained !56% of

the spectral variation (R2X) and !41% of the composition

variation (R2Y). The best relative prediction was for linoleic

acid with a correlation coefficient of 0.42 for the predicted

versus analytically determined values of the external validation

samples (Q2ev).

In contrast, PLS models using NIR data and absolute levels

of the kernel constituents are predictive. The most accurate

models were for predictions of the major components of the

kernel including protein, starch, and calorie content as well as

seed weight (Table 4 and Fig. 4). These PLS equations for

protein, starch, calories, and kernel weight all explain R85%

of the variation found in the NIR spectra. Based on cross-

validation statistics, one or two significant PLS factors (A)

were selected for each calibration equation, and these

equations explained R82% of the variation existing in the

analytically determined components. The models have a good

predictive power based on internal cross-validation (Q2cvZ
0.81–0.91), external cross-validation (Q2evZ0.85–0.90), and

the ratio of the standard error of prediction (SEP) to the SD of

the prediction set (SEP/SDZ0.32–0.41). Scatter plots of the

analytically determined and PLS predicted values indicate that

the models show similar levels of prediction error over the full

range of values measured (Fig. 4). In addition, all models

showed a slight bias with a trend to over-estimation of the

constituents in the kernels with the lowest absolute levels and

under-estimating kernels with high constituent levels. Inter-

estingly, PLS models could also be developed for the major

fatty acids within the kernel when the relative levels were

normalized for kernel weight (Table 4 and Fig. 3E and F).

These data indicate that models accurately describing
Oleic, 18:1b (%)GSE Linoleic, 18:2b

(%)GSE

Calorie (cal/g)GSE

18.5G0.20 54.0G0.49 4005G22

28.8G0.35 48.1G0.84 3774G21

29.1G0.22 42.5G0.43 4017G14

21.9G0.25 56.7G0.57 4122G24

27.3G0.77 46.3G1.50 4049G19

20.8G0.61 56.4G0.58 3977G43

28.1G0.16 50.8G0.37 4121G35

25.6G0.14 56.1G0.51 4011G20



Table 2

Comparison of average normal and mutant kernel composition

Constituent (GSD) Normal (nZ55) Mutant (nZ55)

Protein (mg/k)a 28.6G4.0 18.0G6.0

Starch (mg/k)a 144G21 81G33

Energy (cal/k)a 921G133 559G174

Kernel weight (mg/k)a 229G31 139G40

Palmitic acid (normalized)b 27.4G4 19G6

Oleic acid (normalized)b 65G12 42G14

Linoleic acid (normalized)b 123G15 70G23

a kZkernel.
b Fatty acid content was normalized by multiplying average seed weight by

the relative levels.

T.M. Baye et al. / Journal of Cereal Science 43 (2006) 236–243 241
individual kernel composition can be developed using single-

kernel NIR. However, the results suggest that the NIR spectra

are reporting an absolute amount of each component in the

kernel rather relative levels.

4. Discussion

We tested the possibility of developing single-kernel

calibration models for the major components of the maize

seed. Our results suggest that these models will be a challenge

to develop, but with an appropriate strategy, accurate

compositional predictions for single kernels are certainly

possible. However, the standard paradigms for developing

PLS or principal component regression predictive models do

not appear to be suitable for single kernel predictions in maize

kernels. First, single-kernel NIT data contain excessive noise

and cannot be used as an equivalent to NIR data for predicting

individual kernel composition. Similar results have been

reported previously for individual maize kernels (Cogdill

et al., 2004; Orman and Schumann, 1992). Potentially, the NIT

spectra are more sensitive to the density or total mass of the

kernel, because maize kernels are relatively large and longer

wavelength light does not penetrate individual kernels.
Table 3

Range of composition variation in the samples used to develop PLS models

Calibration set (nZ90)

Mean SD Min

Relative

Protein (% meal) 12.3 0.9 10.8

Starch (% meal) 60.2 9.2 33.1

Energy (cal/g) 4027 245 2874

Palmitic acid (% oil) 13.3 2.2 9.6

Oleic acid (% oil) 29.6 3.6 20.5

Linoleic acid (% oil) 51.7 4.7 40.5

Absolute value

Kernel weight (mg/k) 183 59 39

Protein (mg/k) 23.1 7.2 5.0

Starch (mg/k) 119 42 21

Energy (cal/k) 738 241 144

Palmitic acida 23.4 6.9 5.3

Oleic acida 52.7 17.9 10.7

Linoleic acida 95.8 33.8 20.8

a Fatty acid content was normalized by multiplying average seed weight by the r
However, the NIT data cannot be used to predict kernel weight

(data not shown) suggesting that the noise from single kernel

NIT data results from more complex sources than simply seed

mass differences.

Second, the standard approach of regressing against

composition data expressed as a percentage does not yield

accurate predictive models for single maize kernels. Instead,

NIR data regressed against kernel composition expressed as an

absolute or normalized amount yield the most accurate

predictions. This latter approach takes into account variations

in kernel weight and allows for independent changes of

individual constituents. The models based on absolute or

normalized amounts are predictive and could be used to make

selections of individual kernels with altered composition.

Overall, these observations indicate that single kernel near

infrared spectroscopy reports an absolute amount of the kernel

constituents.

This conclusion provides insight into the reasons for the

poor prediction of the relative composition PLS models. A

change in the absolute amount of a single constituent will cause

percentage changes in all of the constituents of the kernel, and

two kernels with identical absolute amounts of one constituent

would have different relative levels of this constituent if any

other component within the kernel changes. As an example,

consider two kernels that each contain 25 mg of protein. One

kernel has slightly more total mass than the other, 185 vs.

175 mg, which could be caused by a different accumulation of

starch or oil. These kernels will have different relative levels of

protein, 13.5 vs. 14.2%, and the kernel with less total mass will

appear to have a 6% gain in protein content. However, our

results suggest that the underlying NIR spectral fingerprint will

still report that both kernels have 25 mg of protein. Thus, any

regression based on percent protein will be inherently

inaccurate, because the percentage differences in relative

protein for this example are not translated into differences

within the NIR spectra.
Prediction set (nZ20)

Max Mean SD Min Max

16.0 12.1 0.8 10.9 15.0

75.9 59.4 9.5 39.5 71.8

4536 3999 316 3121 4396

24.9 13.5 3.2 10.0 19.3

41.4 27.1 5.3 11.9 35.8

65.6 53.8 4.2 45.4 63.7

287 187 56 90 271

37.2 24.3 7.1 10.7 37.0

193 114 43 36 181

1183 745 231 353 1136

37.2 24.5 6.3 13.8 33.7

88.0 53.3 18.2 11.9 76.6

135.2 100.9 31.7 40.9 130.7

elative levels.



Table 4

PLS model statistics based on relative or absolute values for kernel constituent data

Constituent Calibration statistics Prediction statistics

A R2X R2Y Q2cv Q2ev SEP SEP/SD

Relative

Protein (% meal) 3 0.56 0.37 0.16 0.23 1.7 2.12

Starch (% meal) 1 0.29 0.29 0.23 0.24 11.5 1.21

Energy (cal/g) 2 0.30 0.26 0.18 0.41 183 0.58

Palmitic acid (% oil) 2 0.49 0.41 0.30 0.38 2.2 0.69

Oleic acid (% oil) 1 0.26 0.30 0.20 0.39 4.2 0.79

Linoleic acid (% oil) 1 0.40 0.34 0.27 0.42 4.2 1.00

Absolute

Protein (mg/k) 2 0.90 0.92 0.91 0.90 2.3 0.32

Starch (mg/k) 2 0.86 0.89 0.88 0.87 17.8 0.41

Energy (cal/k) 1 0.85 0.82 0.81 0.85 93.9 0.41

Palmitic acida 2 0.66 0.71 0.67 0.77 3.2 0.51

Oleic acida 2 0.68 0.79 0.75 0.79 9.6 0.53

Linoleic acida 1 0.85 0.87 0.86 0.84 13.3 0.42

AZnumber of PLS factors used to build the model; R2XZthe explained spectral variation, (1-SS(E)/SS(X)); SS(E)Zsums of squares of the X residuals; SS(X)Ztotal

sums of squares for the spectral variation. R2YZthe explained variation in seed composition, (1-SS(F)/SS(Y)); SS(F)Zsums of squares of the Y residuals and

SS(Y)Ztotal sums of squares for the constituent variation. Q2cvZthe predictive power of the model according to cross-validation (1-P(PRESS/SS)); Q2evZ
correlation coefficient for the external validation set; SEPZstandard error of prediction for the external validation set; SDZstandard deviation of the external

validation set.
a Units are normalized fatty acid content.
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Furthermore, these results suggest that current approaches

to develop calibrations for commercial seed sorting instru-

ments are limited. Accurate seed composition predictions are

probably possible using relative composition data. However,

these predictions will be limited to a narrow range of seed

weight, because seed weight changes can cause dramatic

relative composition changes that are not necessarily reflected
Fig. 4. Scatter plots of the analytically determined and predicted values for the PLS

values for the prediction set of 20 samples and a linear regression trend line. Plo

(E) normalized linoleic acid, and (F) normalized oleic acid.
in near infrared spectra. More robust calibrations need to

account for variations in seed weight to allow for accurate

maize kernel composition predictions and sorting. Finally, it is

important to note that the calibrations developed here rely on

analytical data derived from pooled kernel samples. More

accurate calibrations are likely to be possible by obtaining

absolute quantities of constituents from single kernels.
models using NIR and absolute kernel composition data. Each plot shows the

ts are given for (A) protein, (B) starch, (C) calorie content, (D) seed weight,
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